Ultimate Normal Forms for Parallelized Natural Deductions
نویسنده
چکیده
The system of natural deduction that originated with Gentzen (1934–5), and for which Prawitz (1965) proved a normalization theorem, is re-cast so that all elimination rules are in parallel form. This enables one to prove a very exigent normalization theorem. The normal forms that it provides have all disjunction-eliminations as low as possible, and have no major premisses for eliminations standing as conclusions of any rules. Normal natural deductions are isomorphic to cut-free, weakening-free sequent proofs. This form of normalization theorem renders unnecessary Gentzen’s resort to sequent calculi in order to establish the desired metalogical properties of his logical system. Ultimate normal forms are well-adapted to the needs of the computational logician, affording valuable constraints on proof-search. They also provide an analysis of deductive relevance. There is a deep isomorphism between natural deductions and sequent proofs in the relevantized system.
منابع مشابه
Rewriting for Fitch Style Natural Deductions
Logical systems in natural deduction style are usually presented in the Gentzen style. A different definition of natural deduction, that corresponds more closely to proofs in ordinary mathematical practice, is given in [Fitch 1952]. We define precisely a CurryHoward interpretation that maps Fitch style deductions to simply typed terms, and we analyze why it is not an isomorphism. We then descri...
متن کاملSequent Calculus 3.1 Cut-free Sequent Calculus
In the previous chapter we developed linear logic in the form of natural deduction , which is appropriate for many applications of linear logic. It is also highly economical, in that we only needed one basic judgment (A true) and two judgment forms (linear and unrestricted hypothetical judgments) to explain the meaning of all connectives we have encountered so far. However, it is not immediatel...
متن کاملSequent Calculus 3.1 Cut-free Sequent Calculus
In the previous chapter we developed linear logic in the form of natural deduction , which is appropriate for many applications of linear logic. It is also highly economical, in that we only needed one basic judgment (A true) and two judgment forms (linear and unrestricted hypothetical judgments) to explain the meaning of all connectives we have encountered so far. However, it is not well-suite...
متن کاملStructural Proof Theory as Rewriting
The multiary version of the λ-calculus with generalized applications integrates smoothly both a fragment of sequent calculus and the system of natural deduction of von Plato. It is equipped with reduction rules (corresponding to cut-elimination/normalisation rules) and permutation rules, typical of sequent calculus and of natural deduction with generalised elimination rules. We argue that this ...
متن کاملMulitlanguage First Order Theories of Propositional Attitudes
can thus restrict ourselves to normal form deductions. The proof is again by induction on the length of the deduction. All the deductions not involving R down and R up are trivially translated and not considered. As we are considering normal form deductions , we cannot have branches with applications of R up before the application of R down. Moreover, since all the deductions start from wws of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Logic Journal of the IGPL
دوره 10 شماره
صفحات -
تاریخ انتشار 2002